{itemname}
{itemname}
香港二樓書店 > 今日好書推介
那些動物告訴我的事:用科學角度透視動物的思想世界
定價127.00元
8
折優惠:
HK$101.6
●二樓推薦
●文學小說
●商業理財
●藝術設計
●人文史地
●社會科學
●自然科普
●心理勵志
●醫療保健
●飲 食
●生活風格
●旅 遊
●宗教命理
●親子教養
●少年讀物
●輕 小 說
●漫 畫
●語言學習
●考試用書
●電腦資訊
●專業書籍
文科生也看得懂的資料科學
沒有庫存
訂購需時10-14天
9789864767939
Annalyn Ng
沈佩誼
碁峰
2018年4月30日
127.00 元
HK$ 114.3
詳
細
資
料
ISBN:9789864767939
規格:平裝 / 196頁 / 17 x 23 cm / 普通級 / 全彩印刷 / 初版
出版地:台灣
分
類
電腦資訊
>
資料庫/大數據
>
資料處理/大數據
同
類
書
推
薦
Excel進階函數與PowerQuery整合應用|資料清洗與整理
SQL學習手冊 第三版|資料建立、維護與檢索
【圖解】從入門到精通Excel╳Python資料處理術:搭配工作實務場景,輕鬆學會除錯、擷取、排序、彙整指定數據,製作QR碼也沒問題
Python ? Excel 高效率打造辦公室作業+數據分析自動化
數據分析實用導引:RapidMiner 實戰篇
其
他
讀
者
也
買
WEB 設計職人必修:UX Design 初學者學習手冊
ECOCUBE 299368 Gerbera (非洲菊)
ECOCUBE 299429 Forget me not (毋忘我)
ECOCUBE 299290 Lavender (薰衣草)
Photobash入門:CLIP STUDIO PAINT PRO與照片合成繪製場景插畫
內
容
簡
介
* amazon.com 五顆星讀者無差評
* 史丹佛大學、劍橋大學相關課程指定教材
雖然資料科學越來越常被用來改善工作場域的種種決策,但對普羅大眾來說,這仍然是個神祕難懂的領域。本書避開艱深的數學與生澀的術語,以直觀的例子來說明各演算法功能與特色,例如,用預測犯罪事件的例子來解釋隨機森林,用分群演算法來分析各類電影迷的人格特質等,本書所選用的例子能夠幫助讀者明確理解各演算法及實際應用,即使您不曾接觸過資料科學,也能藉由本書掌握基本概念。
本書特色:
.淺白的解釋,以及大量的圖解說明
.以實際的例子解說演算法的應用
.每章最後會有重點歸納加強學習效果
來自各界的讚譽
「以圖解的方式解說重要的資料科學相關演算法,對於剛接觸資料科學領域的新手、從事數據分析相關的商業人士而言,極有幫助。」- Dr. David Stillwell, 劍橋大學大數據課程講師
「以視覺化的方式解釋機器學習的概念,可以幫助不具備相關技術背景的學生了解這些抽象的概念。同時也能幫助剛接觸資料科學領域的學生掌握相關的基礎知識。」Ethan Chan,史丹佛大學大數據課程講師
「對資料科學與機器學習做了清楚的介紹,沒有拗口的術語,內容在廣度與深度也取得極佳的平衡。本書刻意避開數學推導,程式碼實作,在介紹不同機器學習方法的應用時也使用許多真實的問題。整體而言,本書對資料科學有相當生動的詮釋,我極力推薦。」- 陳俊杉, 台灣大學土木工程系教授
目
錄
Ch01|基本知識簡單說
1.1 準備資料
1.2 挑選演算法
1.3 調整參數
1.4 評估結果
1.5 本章小結
Ch02|k-平均分群演算法
2.1 尋找消費者群集
2.2 舉例:電影迷的性格特徵
2.3 定義群集
2.4 先天限制
2.5 本章小結
Ch03|主成份分析
3.1 探索食物的營養成分
3.2 主成份
3.3 舉例:分析食物族群
3.4 先天限制
3.5 本章小節
Ch04|關聯規則
4.1 找出消費模式
4.2 支持度、可信度與作用度
4.3 舉例:食品雜貨交易
4.4 先驗原則
4.5 先天限制
4.6 本章小結
Ch05|社群網路分析
5.1 將關係地圖化
5.2 舉例:武器交易的地緣政治性
5.3 Louvain 演算法
5.4 PageRank 演算法
Ch06|迴歸分析
6.1 推導一條趨勢線
6.2 舉例:預測房價
6.3 梯度下降
6.4 迴歸係數
6.5 相關係數
6.6 先天限制
6.7 本章小結
Ch07|k-最近鄰演算法與異常檢測
7.1 食物取證
7.2 物以類聚
7.3 舉例:蒸餾出紅酒的不同成份
7.4 異常檢測
7.5 先天限制
7.6 本章小結
Ch08|支持向量機
8.1 「不」或「噢不」?
8.2 舉例:預測心臟疾病
8.3 畫出最佳分界線
8.4 先天限制
8.5 本章小結
Ch09|決策樹
9.1 預測災難中的存活機率
9.2 舉例:逃出鐵達尼號
9.3 產生一棵決策樹
9.4 先天限制
9.5 本章小結
Ch10|隨機森林
10.1 群眾的智慧
10.2 舉例:預測犯罪
10.3 總體
10.4 引導聚集算法
10.5 先天限制
10.6 本章小結
Ch11|類神經網路
11.1 建立一顆大腦
11.2 舉例:辨識手寫數字
11.3 類神經網路的組成
11.4 活化法則
11.5 先天限制
11.6 本章小結
Ch12|A/B測試與多拉桿吃角子老虎機
12.1 A/B測試的基本概念
12.2 A/B測試的限制
12.3 Epsilon-Decreasing策略
12.4 舉例:多拉桿吃角子老虎機
12.5 有趣事實:跟緊贏家就對了?
12.6 Epsilon-Decreasing 策略的限制
12.7 本章小結
?
序
序
本書由兩位資料科學愛好者,撰寫而成。雖然資料科學越來越常被用來改善工作場域的種種決策,但許多人對這個領域的了解甚少。因此,我們將這些知識整理成一本書,幫助更多人學習,無論是有志深造的學生、積極進取的商業專業人士,或是任何有顆好奇心的人。
每一個教學課程涵蓋了各演算法的重要功能與假設,避開艱深的數學與生澀的術語。我們也使用現實世界的實際資料與例子來講述這些技法。
沒有以下這些人的幫助,我們不可能完成這本書。
感謝我們的文字編輯和好友Sonya Chan,她巧妙地融合了我們的寫作風格,確保我們的敘述流暢一致。
感謝Dora Tan為本書排版與彩圖提供建議。
感謝我們的好友Michelle Poh、Dennis Chew和Mark ho,他們為如何增進本書內容的可理解性提供非常寶貴的建議。
感謝密西根大學的Long Nguyen教授,史丹佛大學的Percy Liang教授與Michal Kosinski博士,謝謝諸位教授指導,並與我們兩位分享專業建言。
最後,我們想要感謝彼此,好友之間不免爭吵,但我們總是堅持到底,一起完成初衷。
書
評
其 他 著 作